References

特に“自律的”な研究を中心に集めた、機械学習やロボットを使った論文の一例を紹介します

自律的物質創製技術の概況と世界的な動向をまとめた解説記事はこちら

自律:

機械学習やロボットを活用することで人間が一切関与しないプロセス

マテリアルズインフォマティクス:

機械学習や統計分析を用いて、新素材を探索する取り組み

プロセスインフォマティクス:

最適化するためのパラメータ決定に機械学習を応用。人間が実験を行うため、closed-loopになっていない。

  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2013
  • 2010
  • 2009
  • 2007
  • 1988
  • 1978
  • マテリアルズインフォマティクス

    “Structure motif–centric learning framework for inorganic crystalline systems”

    Huta R. Banjade, Sandro Hauri, Shanshan Zhang, Francesco Ricci, Weiyi Gong, Geoffroy Hautier, Slobodan Vucetic*, Qimin Yan*
    Science Advances 7, 2021, eabf175. (https://www.science.org/doi/10.1126/sciadv.abf1754)

    要約

    金属酸化物の電子構造を、構造モチーフを用いて機械学習で予測し、バンドギャップを推定。
    22,606の金属酸化物のモチーフから学習し、グラフニューラルネットワークを利用した。(文責: 石附)

  • マテリアルズインフォマティクス

    “Active discovery of organic semiconductors”

    Christian Kunkel, Johannes T. Margraf, Ke Chen, Harald Oberhofer, Karsten Reuter.
    Nature Communications 12, 2021, 2422. (https://www.nature.com/articles/s41467-021-22611-4)

    要約

    有機分子の多様性により、有機半導体のデザイン可能性は無限に広がっている。そのため、優れた有機半導体を発見するには効率的な探索が不可欠である。本研究では、有機半導体の発見を導く機械学習法として、能動的機械学習(AML; active machine learning)に着目し、効率的な電荷注入と電荷移動度を記述子として、優れた分子候補を迅速に発見した。(文責: 中山)

  • マテリアルズインフォマティクス

    “Inferring experimental procedures from text-based representations of chemical reactions”

    Alain C. Vaucher, Philippe Schwaller, Joppe Geluykens, Vishnu H. Nair, Anna Iuliano, Teodoro Laino.
    Nature Communications 12, 2021, 2573. (https://www.nature.com/articles/s41467-021-22951-1)

    要約

    ある化学反応を実際に実行するための実験手順(溶媒や反応条件など)の予測に機械学習を用いる研究はこれまでほとんどなかった。著者らは最新の自然言語モデルを用いて、特許から実験手順テキストを抽出・処理することにより、693,517の化学式と関連する動作シーケンスからなるデータセットを作成した。このデータセットを用いて学習したAIモデルは、化学式から実験手順を予測することが可能であり、その手順は、50%以上のケースで人間の介入なしに実行するのに十分であることがわかった。(文責: 中山)

  • マテリアルズインフォマティクス

    “Inferring experimental procedures from text-based representations of chemical reactions”

    Alain C. Vaucher, Philippe Schwaller, Joppe Geluykens, Vishnu H. Nair, Anna Iuliano, Teodoro Laino.
    Nature Communications 12, 2021, 2573. (https://www.nature.com/articles/s41467-021-22951-1)

    要約

    ある化学反応を実際に実行するための実験手順(溶媒や反応条件など)の予測に機械学習を用いる研究はこれまでほとんどなかった。著者らは最新の自然言語モデルを用いて、特許から実験手順テキストを抽出・処理することにより、693,517の化学式と関連する動作シーケンスからなるデータセットを作成した。このデータセットを用いて学習したAIモデルは、化学式から実験手順を予測することが可能であり、その手順は、50%以上のケースで人間の介入なしに実行するのに十分であることがわかった。(文責: 中山)

  • 自律

    “A robotic prebiotic chemist probes long term reactions of complexifying mixtures”

    Silke Asche, Geoffrey J. T. Cooper, Graham Keenan, Cole Mathis, Leroy Cronin.
    Nature Communications 12, 2021, 3547. (https://www.nature.com/articles/s41467-021-23828-z)

    要約

    地球上の生命の誕生に関する生物化学的仮説を実験的に検証するためには、広大な多成分反応を探索するための長期的な自律実験が必要となる。本研究では、自律的な物質合成が可能なロボット化学者が4週間以上にわたり連続で実験を行い、単純な前駆体から複雑性の高い分子を生成することを発見した。このような実験は、酵素以前の生化学的経路の出現に関する長年の仮説を検証するために利用できると考えられる。(文責: 中山)

  • プロセスインフォマティクス

    “Multi-Fidelity High-Throughput Optimization of Electrical Conductivity in P3HT-CNT Composites”

    Daniil Bash, Yongqiang Cai, Vijila Chellappan, Swee Liang Wong, Xu Yang, Pawan Kumar, Jin Da Tan, Anas Abutaha, Jayce JW Cheng, Yee-Fun Lim, Siyu Isaac Parker Tian, Zekun Ren, Flore Mekki-Berrada, Wai Kuan Wong, Jiaxun Xie, Jatin Kumar, Saif A. Khan, Qianxiao Li,* Tonio Buonassisi,* Kedar Hippalgaonkar*
    Advanced. Functional. Materials. 31, 2021, 2102606 (https://doi.org/10.1002/adfm.202102606)

    要約

    半自動ハイスループットプラットフォームとベイズ最適化を組み合わせることで、レギュラーポリ-3-ヘキシルチオフェン(P3HT)とカーボンナノチューブ(CNT)からなる機能性複合材料の電気伝導度の最大化を達成した。(文責: 中山)

  • 自律

    “Data-science driven autonomous process optimization”

    Melodie Christensen, Lars P. E. Yunker, Folarin Adedeji, Florian Häse, Loïc M. Roch, Tobias Gensch, Gabriel dos Passos Gomes, Tara Zepel, Matthew S. Sigman, Alán Aspuru-Guzik, Jason E. Hein.
    Communications Chemistry volume 4, 2021, 112. (https://doi.org/10.1038/s42004-021-00550-x)

    要約

    全自動クローズドループ実験により、有機反応の1種である鈴木-宮浦カップリングの収率の最適化を行っている。ChemOSを用いることで、連続変数(触媒量、触媒比、原料比、反応温度)に加えて、カテゴリー変数(触媒の種類)を用いて、最適化していることが特徴。また、ベイズ最適化の過程では、8個の反応を並列で行い、最適化完了までの時間を短縮している。

  • マテリアルズインフォマティクス

    “Pushing the frontiers of density functionalsby solving the fractional electron problem”

    James Kirkpatrick*, Brendan McMorrow, David H. P. Turban, Alexander L. Gaunt, James S. Spencer, Alexander G. D. G. Matthews, Annette Obika, Louis Thiry, Meire Fortunato, David Pfau, Lara Román Castellanos, Stig Petersen, Alexander W. R. Nelson, Pushmeet Kohli, Paula Mori-Sánchez, Demis Hassabis, Aron J. Cohen.
    Science 374, 2021, 1385–1389. (https://www.science.org/doi/10.1126/science.abj6511)

    要約

    密度汎関数理論(DFT)は、化学、生物学、材料科学におけるさまざまな系の特性を予測するために最も広く使われている。しかし、最新の汎関数においても、非整数電子系・スピン系については誤差が大きいことが課題であった。そこで、そのような非整数電子・スピン系の計算結果を学習データに追加しニューラルネットワークを学習させることで、新たな汎関数DM21を開発し、その課題を解決した。(文責: 中山)

  • プロセスインフォマティクス

    “Machine learning–accelerated design and synthesis of polyelemental heterostructures”

    Carolin B. Wahl, Muratahan Aykol, Jordan H. Swisher, Joseph H. Montoya, Santosh K. Suram, Chad A. Mirkin*

    要約

    8次元化学空間(Au-Ag-Cu-Co-Ni-Pd-Sn-Pt)のデータを入力として、ベイズ最適化アルゴリズムを用いて、特定の界面モチーフを持つ多元素ナノ粒子を得た。これまで知られていなかったナノ粒子組成を提案して、その結果をアルゴリズムに繰り返し共有させることにより合成を行う。このフィードバックループにより、化学的直感だけでは発見できない複雑なヘテロ接合ナノ材料18種の合成に成功した。(文責: 中山)

  • マテリアルズインフォマティクス

    "Bayesian reaction optimization as a tool for chemical synthesis"

    Benjamin J. Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus I. Martinez Alvarado, Jacob M. Janey, Ryan P. Adams, and Abigail G. Doyle

    要約

    ベイズ最適化を用いて、最適な有機合成条件を探索した論文。ベイズ最適化とは、ブラックボックス関数を最適化する機械学習の方法である。本論文では、ハイスループット合成装置を用い、原料の置換基・触媒・反応温度などを変えた実験を繰り返して収率を最適化した。その結果、実験数と実験結果のどちらにおいても、ベイズ最適化が人間よりも優れていることが示された。効率的な合成手法の検討のためには、このようなAI技術を活用することが重要ではないかと感じた。(文責: 石附)

  • 自律

    “Autonomous Discovery of Battery Electrolytes with Robotic Experimentation and Machine Learning”

    Adarsh Dave, Jared Mitchell, Kirthevasan Kandasamy, Han Wang, Sven Burke, Biswajit Paria, BarnabásPóczos, Jay Whitacre,* Venkatasubramanian Viswanathan
    Cell Reports Physical Science, 1, 2020, 100264. (https://doi.org/10.1016/j.xcrp.2020.100264)

    要約

    液体を扱ったロボット実験とベイズ最適化による水系電池電解質の自律的な発見。40時間に及ぶ140種類の電解質配合の実験テストで最適な電解質を発見した。発見された電解質は、既知の設計原理とは反する材料であり、ロボットと機械学習を組み合わせることで、研究者の常識とは異なる新しい電池材料を発見する可能性を示している。 (文責: 中山)

  • 自律

    "Self-driving laboratory for accelerated discovery of thin-film materials"

    B. P. MacLeod, F. G. L. Parlane, T. D. Morrissey, F. Häse, L. M. Roch, K. E. Dettelbach, R. Moreira, L. P. E. Yunker, M. B. Rooney, J. R. Deeth, V. Lai, G. J. Ng, H. Situ, R. H. Zhang, M. S. Elliott, T. H. Haley, D. J. Dvorak, A. Aspuru-Guzik, J. E. Hein, and C. P. Berlinguette
    Sci. Adv., 6, 2020, eaaz8867. (https://doi.org/10.1126/sciadv.aaz8867)

    要約

    有機薄膜を創製するプラットフォーム「Ada」の事例。Ada は、グリッパー、ピペット、アームを備えたロボットによって、液体注入や基板搬送ができる。ペロブスカイト太陽電池に用いられる有機正孔輸送材料の正孔移動度について、ドーパントと正孔輸送剤との比率、および、アニール時間を変数として、ベイズ最適化により最大化した。原料の調整、基板上へのスピンコート、アニール、UV-vis-NIR スペクトル測定、電流-電圧曲線測定、移動度の計算、ベイズ最適化による次の実験の設計、というClosed-loop を繰り返すことにより、従来は9 ヵ月かかっていた実験が、5 日間で完了した。(文責:石附)

  • 自律

    "Autonomous discovery of optically active chiral inorganic perovskite nanocrystals through an intelligent cloud lab"

    Jiagen Li, Junzi Li, Rulin Liu, Yuxiao Tu, Yiwen Li, Jiaji Cheng, Tingchao He, and Xi Zhu
    Nat. Comm., 11, 2020, 2046. (https://doi.org/10.1038/s41467-020-15728-5)

    要約

    フロー合成装置の活用例。原料溶液濃度と温度を独立変数としたSNOBFIT 法(Stable Noisy Optimization by Branch and Fit)により、円偏光二色性を最大化したCsPbBr3 ナノ粒子を創製した。装置上の工夫として、クラウド化による遠隔操作や、ロボットアーム活用による物性評価装置への試料の移送が挙げられる。(文責:石附)

  • 自律

    "A mobile robotic chemist"

    Benjamin Burger, Phillip M. Maffettone, Vladimir V. Gusev, Catherine M. Aitchison, Yang Bai, Xiaoyan Wang, Xiaobo Li, Ben M. Alston, Buyi Li, Rob Clowes, Nicola Rankin, Brandon Harris, Reiner Sebastian Sprick & Andrew I. Cooper

    要約

    自律的に移動できるロボットアームを活用した人間の動作をそのまま行うことができるロボットについての論文。水から水素を生成する光触媒の探索を行い、8日間で688回の実験を行い、初期に配合した触媒の6倍以上の性能を持つ混合物を同定した。従来のロボットは特定の操作を行うために開発されたものが多かったが、A mobile robotic chemist は人間と同じ操作を行うことができるため、様々な応用が期待される。(文責: 木村)

  • プロセスインフォマティクス

    “Efficient search of compositional space for hybrid organic–inorganic perovskites via Bayesian optimization”

    Henry C. Herbol, Weici Hu, Peter Frazier, Paulette Clancy, Matthias Poloczek
    npj Computational Materials, 4, 2018, 51 (2018) (https://doi.org/10.1038/s41524-018-0106-7)

    要約

    望ましい特性を持つ有機無機ハイブリッドペロブスカイト(HOIP)を得るには、多様な選択肢の中からカチオン、ハロゲン化物、溶媒の混合物を選択する必要がある。本研究では、探索空間が成分の有無を示すバイナリ変数で与えられる場合に有効なベイズ最適化手法を提案している。提案手法により、72通りの組み合わせからなるHOIP組成空間において15±10回の計算で最適な組成を見出すことができた。(文責: 中山)

  • プロセスインフォマティクス

    “Phoenics: A Bayesian Optimizer for Chemistry”

    Florian Häse, Loïc M. Roch, Christoph Kreisbeck, Alán Aspuru-Guzik*
    ACS Cent. Sci. 4, 2018, 1134–1145 (https://doi.org/10.1021/acscentsci.8b00307)

    要約

    多目的最適化(複数の目的関数(物性値・収量など)を同時に満たす合成条件を見つけること)は一般に困難である。Chimeraは実験や計算のための汎用的な多目的最適化手法である。個々の目的関数に関する詳細な事前知識が必要ないことが利点である。(文責: 中山)

  • プロセスインフォマティクス

    “Chimera: enabling hierarchy based multi-objective optimization for self-driving laboratories”

    Florian Hase, Loïc M. Roch, Alán Aspuru-Guzik*
    Chem. Sci., 9, 2018, 7642–7655 (https://doi.org/10.1039/C8SC02239A)

    要約

    Phoenicsは、ベイズ最適化とベイズカーネル密度推定を組み合わせた、化学分野用の確率的大域的最適化アルゴリズムである。効率的な並列探索が可能であり、実験や長時間の計算のような、評価するのに高いコストを要する未知の目的関数の迅速な最適化が期待される。(文責: 中山)

  • マテリアルズインフォマティクス

    "Unsupervised word embedding capture latent knowledge from materials science literature"

    Vahe Tshitoyan, John Dagdelen, Leigh Weston , Alexander Dunn, Ziqin Rong, Olga Kononova, Kristin A. Persson, Gerbrand Ceder, and Anubhav Jain
    Nature 571(7763), 2019, 95-98. (https://www.nature.com/articles/s41586-019-1335-8)

    要約

    自然言語処理の1つであるword embeddingsを材料科学に応用した論文。過去の文献に登場した単語をベクトル化したうえで、熱電性と類似度が近い材料をランキング。1922-2009年までの文献データを用いて新規な熱電材料を推測した結果、ランキング上位5つのうち3つが、2012-2017年に実際に報告されていた。

    <用語解説>

    ・自然言語処理:人間の言語(自然言語)をコンピュータに処理させる技術。
    ・word embeddings:意味の類似したものが近くに配置されるように、単語をベクトル表現する技術。単語同士の類似性は、ベクトル同士のコサイン類似度で判別する。(文責: 石附)

  • 自律

    "Organic synthesis in a modular robotic system driven by a chemical programming language"

    Sebastian Steiner, Jakob Wolf, Stefan Glatzel, Anna Andreou, Jaroslaw M. Granda, Graham Keenan, Trevor Hinkley, Gerardo Aragon-Camarasa, Philip J. Kitson, Davide Angelone, and Leroy Cronin

    要約

    反応、ろ過、分液、溶媒の減圧留去を自動で行うロボットに関する論文。化学合成に適したプログラミング言語を開発したと報告されている。本論文のロボットは、反応条件を最適化するAI技術と相性が良いと感じた。(文責: 石附)

  • マテリアルズインフォマティクス

    “Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning”

    Edward Kim, Kevin Huang, Adam Saunders, Andrew McCallum, Gerbrand Ceder, Elsa Olivetti*
    Chem. Mater. 29, 2017, 9436-9444. (https://doi.org/10.1021/acs.chemmater.7b03500)

    要約

    過去数年間、Materials Genome Initiative (MGI)の取り組みにより、優れた材料の予測が膨大に生まれており、実際に物質合成を行う段階がボトルネックになりつつある。そこで、著者らは自然言語処理技術を利用して、数万件の学術論文から材料合成パラメータを自動的にコンパイルする手法を開発した。(文責: 中山)

    • 自律

      "Autonomy in materials research: a case study in carbon nanotube growth"

      P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker, M. Krein, J. Poleski, R. Barto, and B. Maruyama
      npj Comput. Mater., 2, 2016, 16031. (https://www.nature.com/articles/npjcompumats201631)

      要約

      米国空軍研究所のMaruyamaグループによる、化学気相蒸着(CVD)法によるカーボンナノチューブの合成に特化した自律的物質創製ロボットの例である。触媒を付着させたシリコンの柱を基板上に予め数千個作成した後に、基板を繰り返し動かしながらレーザー(波長532 nm)で柱を1 本ずつ加熱し、個々の柱上に成長条件の異なるカーボンナノチューブを合成した。この加熱レーザーをラマン分光法の励起源としても使用し、成長速度をその場観察している。成長速度の最大化を目的として、温度、圧力、ガス組成を遺伝的アルゴリズムで最適化した。なお、このグループからは、最適化アルゴリズムとしてベイズ最適化を適用した続報も存在する。(文責:石附)

  • 自律

    "A self optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy"

    Victor Sans, Luzian Porwol, Vincenza Dragone, and Leroy Cronin
    Chem. Sci., 6, 2015, 1258-1264. (https://doi.org/10.1039/C4SC03075C)

    要約

    英国グラスゴー大のL. Cronin グループによる報告。イミン合成の収率の最適化を目的とし、原料比率と反応時間を独立変数として、Simplex 法(Nelder–Mead 法)で次回の実験条件を最適化した。フロー合成装置にインライン核磁気共鳴(NMR)を組み込んでいる。なお、同グループは、物質創製を行う自律的物質探索ロボット以外に、有機合成の反応探索実験を自律化したロボットを2018年2021年にそれぞれ報告するなど、自律的に探索を行うロボットについて活発に研究を行っている。(文責:石附)

  • 自律

    "Rapid Discovery of a Novel Series of Abl Kinase Inhibitors by Application of an Integrated Microfluidic Synthesis and Screening Platform"

    Bimbisar Desai, Karen Dixon, Elizabeth Farrant, Qixing Feng, Karl R. Gibson, Willem P. van Hoorn, James Mills, Trevor Morgan, David M. Parry, Manoj K. Ramjee, Christopher N. Selway, Gary J. Tarver, Gavin Whitlock, and Adrian G. Wright
    J. Med. Chem., 56(7), 2013, 3033–3047. (https://doi.org/10.1021/jm400099d)

    要約

    Abl キナーゼ阻害性能が最大となる有機低分子化合物のフロー合成装置による創製。270通り(27種×10種)の原料の組合せにおける反応生成物について、合成→評価→活性予測モデルの更新→次に合成する化合物の決定、というClosed-loop を全自動で回した。活性予測モデルでは、ランダムフォレスト回帰により、構造の異なる原料の種類という離散変数を扱った。(文責:石附)

  • 自律

    "The Automation of Science"

    Ross D. King, Jem Rowland, Stephen G. Oliver, Michael Young, Wayne Aubrey, Emma Byrne, Maria Liakata, Magdalena Markham, Pinar Pir, Larisa N. Soldatova, Andrew Sparkes, Kenneth E. Whelan, Amanda Clare
    Science 324(5923), 2009, 85-89. (https://science.sciencemag.org/content/324/5923/85)

    要約

    酵母の遺伝子の機能について仮説を立て、検証する実験を自律的に行うことのできるロボット「アダム」を開発した論文。アダムは20の仮説を自律的に立て、実験で検証した。結果として、12の新規の仮説を生み出すことに成功し、人間には特定できなかった3つの遺伝子を特定することができた。仮説を立て検証するというプロセスを人間の手ではなく、ロボットがすべて行うということはとても興味深い。(文責: 木村)

  • 自律

    "Intelligent routes to the controlled synthesis of nanoparticles"

    S. Krishnadasan, R. J. C. Brown, A. J. deMelloa, and J. C. DeMello
    Lab Chip, 7, 2007, 1434-1441. (https://doi.org/10.1039/B711412E)

    要約

    フロー合成装置を用いたCdSe ナノ粒子の合成。反応温度、Cd 前駆体およびSe 前駆体の原料溶液の注入速度を独立変数としたSNOBFIT 法(Stable Noisy Optimization by Branch and Fit)により、選択した波長での発光強度の最大化を全自動Closed-loop で行った。(文責:石附)

  • 自律

    "Simplex Optimization of Reaction Conditions with an Automated System"

    松田 りえ子, 石橋 無味雄, 武田 寧

    要約

    国立衛生試験所の松田らによる報告。試薬調整→反応→測定→次の条件生成の繰り返しを、コンピュータに接続されたロボットが自動的に行った。ここでは、ロボットアームとハンドにより試験管を操作し、2 種の試薬の量と反応時間の計3 つをパラメータとして、呈色反応をSimplex 法(modified super modified simplex (SMS2))を用いて最適化した。グリッドサーチ(網羅的な条件探索)では130 回の実験が必要であったが、ロボットシステムでは28 回以下の実験で最適化を達成した。 物質創製ではなく、分析に用いる呈色反応の最適化が目的であるものの、自律的に探索を行うロボットの先駆けとなる事例である。 なお、松田らは、この前年にも、本論文に先立って、SMS法を用いた日本語の論文「ラボラトリーロボットシステムを用いたSimplex法による反応条件の最適化」を発表している。(文責:石附)

  • 自律

    "Chemical process optimization by computer — a self-directed chemical synthesis system"

    H. Winicov, J. Schainbaum, J. Buckley, G. Longino, J. Hill, and C. E. Berkoff

    要約

    ロボットによる自律的物質創製のアイディア自体は化学分野において古くから存在しており、例えば、1978 年には、化学反応パラメータを最適化する全自動Closed-loop ロボットのシステム設計が提案されている。ただし、この提案はシステム設計にとどまっており、ロボットを用いた実験結果の報告はない。(文責:石附)